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The size and shape of equilibrium capillary surfaces
Robert Finn

Department of Mathematics, Stanford University, Stanford, California 94305

Abstract

The classical theory of capillarity is concerned largely with size and shape estimates
in symmetric asymptotic configurations. Recent developments have led to global results for
all symmetric cases, and to new qualitative informaticn on asymptotic properties. Also new
stability criteria have been found. It has been discovered that asymmetric situatinns can
lead to behavior that differs strikingly from the symmetric case. When gravity va...shes,
capillary surfaces in the accustomed sense may not appear. The question of characterizing
those tubes in which surfaces can be found has partially been settled. New progress has
been made toward determining the effects of contact angle hysteresis in cases of particular
interest.

In 1805, P. S. Laplace (Tr. méc. cél., Suppl. au livre X) introduced the notion of the
mean curvature H of a surface and derived for it, in the representation 2z = u(x,y), the
expression

2H = div Tu, with Tu = SR S— Vu (1)

V1 + |Vu|2

The context in which this basic contribution appeared was not an abstract study of the
geometry of surfaces; it lay instead in his e fort to clarify conceptually and describe
quantitatively the rise of liquid in a capillary tube. For that problem there holds 2H =«u,
where « >0 1is a physical constant, and thus the physical problem is transformed by (1)
into an analytical and geometrical one.

In the same year 1805, T. Young gave a formal
reasoning supporting the view that the surface meets
the bounding walls in an angle ¥ depending only on
the materials; thus, »*Tu = cos Y on the boundary
Z of a section §1 of the tube (Figure 1). Thus one
has to solve a nonlinear equation under a nonlinear
boundary condition.

z For the problem considered, not a single nontriv-
ial explicit solution is known. However, Laplace
integrated (1) approximately in the case of a "narrow"

Figure 1 rircular tube of radius a to obtain the celebrated
formula
+ 23
_ 21 - sin” 7
u ~ L(agy) =281 . & (1 - 2)
() Ka cos 7 3 cos? 7
for the height wu, on the axis of symmetry (Figure 2).

Laplace did not prove (2), ncr did he indicate
how small a must be in order to achieve a pre-

)y/ — | scribed accuracy. The first prcof that (2) is cor-
Y 4 N rect was given by D. Siegel (Pacific J. Math., 1980).
/1 ©° Later, Finn (ZAMM, 1981) gave a simpler proof with
1 1 improved error estimates. The method derives from
/7 VAV AN, a discovery of Laplace, that the volume of fluid1
!/ / P / // lifted in the tube is given explicitly by 2wak~'cos<y
; 7/ /7 PV Th. volume is compared with that lifted by certain
2 spherical caps through u,. One is led to the re-
lations
Figure 2
+ cos 7
L(a;7) <y, < u, < 2 —~a (3)
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where u, is the unique nontrivial solution of the equation

2.2 3/2
ug - E% ug cos v + % ug - S;%%z (L -( - 5—;— ug) ] =0. 4)

Thus, the Laplace formula provides a strict lower bound for u,-

at the contact line (Fig. 2

The method leads also to a new bound for the height u,

3
) a 1 . 1l - sin”y
u, <3 08 1+ 52 ¥ (1 + sin v 3 cos‘y ) . N

Also a lower bound analogous to the upper bound in (3) can be given.

The size of a capillary tube is best measured in terms of the nondimensional parameter

B = xaz. (For a water-air interface on the earth's surface, « ~29.) If Bg 1, (3) and (5)
zield quite precise estimates. For larger B, one writes the equation in the parametric
orm

dr _ _ 1 cos ¥ du _ _ r sin (6)
dY " Ktu - sin ¢ ’ d¥ ~ kru - sin ¢

in terms of the inclination angle ¢ of a vertical section of the solution surface. (6)

can be integrated approximately to obtain a hierarchy of estimates, valid for all B and

asymptotically exact both for small and large B (Finn, Moscow Math. Soc., vol. dedicated
to Vekua, 1978; Siegel, Pacific J. Math., 1980; Finn, Pacific J. Math., 1980). We mention
the results
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with p = /l + I—I%gg—w . These (and other related) formulas yield the first general esti-

mates valid in the range 1 < B < 10. They also have remarkable monotonicity properties,

which lead to precise estimates for the meniscus height q = ug -y,

Brulois (Dissertation, Stanford University, 198l1) has given a formal iterative procedure
leading to an arbitrarily good upper bound for u,.

The above methods can be modified and extended to apply also to the problem of the
"sessile" liquid drop, and they lead to general estimates for the parameters describing
its shape (Figure 3). Here the 'physical' prescribed data are in general the volume V

and 7, rather than a and 4y as above.
It turns out there is a "reciprocity' between
the two problems, becoming arbitrarily exact

T for small and for large B (Finn, Pacific J.
Math., 1980).
q
If V+ 0 the drop tends asymptotically
up /‘( , to a spherical cap; however, its behavior
L near the wetted surface changes strikingly,

1{._. a, '—'I_GJ depending on whether ¥y =x or 7 #x. We
Y —— set B = xp? where P is the radius of a

ball of volume V, and write
Figure 3

y
13(7) = ————23—- f sind6 d9 .

4 sin"v o

Then if ¥ # » there holds

lim g =22 (8
B+ 0
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while if 7 = « we find

2
yim B~ 3 ©)

Thus, the rate of decrease of wetted surface is nonuniform in contact angle. If ¥ = 7 the
drop rests--for small P --on a negliglbly small surface (Figure %4). It seems likely that
this surface acts as a point of support about which the drop can rotate rigidly when dis-
turbed slightly, thus establishing new points of contact with the supporting plane and
leading to a kind of "rolling" instability (Finn, J. Reine Angew. Math., to appear).
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The nonuniformity is illustrated in Figure 5, which shows--on logarithmic scale--upper
and lower bounds for the expression in (9) when <y = r, and for ten times that expression

when v = % T,

For large drops, one finds the exact asymptotic relation for the''overhang'

liyw VKR -a) =7 - log(l + /2) - 2 cos % + log cot % . (10)
If v = x, this relation simplifies to
Blim“ VE(R -a) = V2 - log(l + 2) . (11)

Also, R, a can be estimated in terms of B .

The behavior of liquid in a capillary tube with asymmetric section £ can differ in
striking ways from what happens with a circular section. For surfaces of the form =z(x,y)
general estimates can be obtained by comparison with symmetric surfaces, using maximum
principles that are idiosyncratic for the equation. An important distinction between these
principles and the classical ones for elliptic
equations is that the comparison on the bound-
ary need be prescribed only up to a set of
Hausdorff measure zero. e distinction has
as consequence the fcllowing result (Concus
and Finn, Acta Math., 1974):

Let u(x,y) be a capillary surface over a
section {1 which contains the intersection
of a ball By of radius & and a wedge of

opening 2a (Figure 6). Then if a +y 3 n/2,
7
there holds u < & + 6. .f o+ 9y <7%/2, then

u =~ at V., Thus the solutions depend dis-
continuously on the boundary data. Figure 7
shows a "kitchen sink” experiment that exhibits

Figure 6 the disconti.uityv for water in a wedge formed
by two plastic plates.
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The problem was studied further by L. Simon (Pacific J. Math., 1980) who proved that if
a+y>n/2, a < nx/2, then u(x,y) 1is dififerentiable up to V. In independent work,
N. Korevaar (Pacific J. Math., 1980) found the surprising result that if a > n/2, there
exist solutions that are bounded and discontinuous at V

Concus and Finn (Math. Z., 1976) showed there exist sections £, Q' € &, such that «
raises more fluid over ' than ' does. The problem was studied further by Finn (Vekua
volume, 1l.c.) who gave general conditions under which thirs behavior will or will not occur.
Siegel (Pacific J. Math., l.c gave anotheir condit_.n under which the '"'smaller" tube must
raise a larger volume over its section.

For a capillary tube in outer space (zero gravity), solutionsof the problem as posed do
not in general exist At a corner, as in Figure 6, there can be no sclution wher, a+y <w /2
(Concus and Finn, Acta Math., 1974). Physically, the f.uid flows out along the =orner, to
infinity or to the top of the container, whichever comes first. Fnr a regular polygon the
above condition is best possible: if a +y 2w /2 a lower spherical cap yields an explicit
bounded solution Figure 8 shows the results of an experiment conducted in the NASA drop
tower in Cleveland and verifying the predicted behavior.

For a general section § it appears to be not easy to find existence criteria. The case
y = 0 was studied by Chen (Paci”ic J. Math., 1980), who gave a simple geometric sufficiency
condition. For general 7, Finn (Manuscripta Math., 1979) reduced the question to that of
properties of vector fields over §L Applying rhe results to polygonal domains, he found
that in a parallelogram of arbitrary side ratio a sclution exists if and only if a+y > /2

—_ ——

at the smaller vertex angle za . Thus, a solutlion exists in any rectangle 1f 7y » /4,

However, the eaistence can fail for any ¥ # #/2, in trdpezoids obtained from rectangles by

arbitrarily small deformations.

lhis behavior was clarified recently by Finn (Indiana Univ. Math. J., to appear), who
showed that a solution surface exisfts if and only if there is no subarc ' of a semicircle

of radius R? - ¢__Ti_; , meeting I in angles 7 as indicated in Figwe 9, for which
T(I')![’-X*cns*f‘*k’-l—ﬂ*ﬁﬂ. (12)
Here the lengths and areas %, 8 ... are as

indicated in Figures 1, 9.

Consider a situation in which (I') = 0, and
in which there is no I' for which @(I') < 0.
Let Tj l v. Then there is a corresponding

sequence of solution surfaces with boundary
angle “*'_j tending to a solution with boundary
angle Y on R\, i

on [ and throughout 0%. The solution is
asymptoticat to a vertical cylinder of
Figure 9 radius Ry. The cylinder acts as a barrier
across which the solution surface cannot be
extended
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The behavior just described actually occurs in a trapezoidal section.

smaller base

+ 0 while the nonparallel sides meet {at V) in a‘fixed angle 2a,

Also, letting the
I will

tend to V while v # (x/2) - a; thus, the above angle theorem appears as a limiting case.

Gerhardt (Pacific J. Math., 1980) considered tubes ciosed at the bottom and partially

filled with liquid.
withcut gravity) which may have the value

He showed there always exist energy minimizing solutions (with or
z =0

on part of the base. In this region, the

solutions appear to admit the physical interpretation of a thin film covering the ba-e.

A drop hanging from a horizontal plane (Figure 10) behaves very differently from the ses-

sile drop.

The solvtion section is uniquely determined by the height u,

at the vertex and

Figure 10

consiets, for any u_, of a curve that can be

ol
limit secs or double points (Concus and Finn,

continued analyticlly to infinity without

Philos. Trans. Roy. Soc., 1979). There exists

also a singular solution v(r) ~ - (V& r)'1 (Concus and Finn, Invent. Math., 1975: Huh,

Dissercation, Dept. Chem. Eng., University of
u -+ .- oo

o
what weaker result appears in Con~us and Finn

, the 'drop" solutions tend, uniformly in compacta, to

Minnesota, 1969). It is conjectured that as

v(r). A proof of a some-
(Philos. Trans. Roy. Soc., l.c.).

Conditions for stability of the pendent drop have been given by E. Pitts, by Michael and

by others.
Math., 1980).
icnal section need not preclude stability.

The reasoning of Young on the constancy of
forces are central.

tarmined as in tne Young theory.

main constant while the angle 7y increases.

addition of liquid will eventually lead to a value
as then the drop would penetrate the supporting plane.
increases past

posed instability must occur when 7

Most recently, the problem was treated in full generality by Wente (Pacific J.
Wente showed in particular that the occurrence of an inflection in the merid-

v 1is based on a hypothesis that all material

In the presence of resistive forces the behavior can be very diffevent.
Finn and Shinbrot consider a drop of liquid on a horizontal surface, with 7

initially de-

If liquid is now slowly added, the wetted surface may re-

If resistance is very large, then continued

v > %, which is physically impossible
Tt follows that a geometrically im-

n, forcing the wetted surface to in-

crease.

Tt can be shown (rinn, J. Reine Angew. Math., l.c.) that an upper bound for the

(13)

critical B 1is determined as the unique solution of the relation
g3-3e5-382-0.

Finn and Shinbrot interpret the above behavior by postulating a resistance force whose

area density F
of iinear density ¢ directed normally on I.

A

Figure 11

is potential, F = - V9, and which is formally equivalent to a distribution

They then apply that interpretation to the
more complicated situation of a drop on an
inclined plane, intially under zero gravity
and mecting the plane in the (Young) angle
Yo and then subjected to slowly increasing

gravity (Figure 11). Under hypotheses, that
¢ depends only on the pressure at the inter-
face, and that the effect can be separated
into a radial ''squishing"” term as occurs for
the horizontal plate and a ''sliding" term due
to the inclination, they are led to a relation
of the form (for small B)
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cos 7 = cos 7, + e(y) + @ sin ¥ sin 6 - B slnzw sin20 . (14)
Here «, § are constants, a 1is explicitly known and of order B . and ¢ 1is decreasing

in ¥. $# has order 32, € has order § 1if ¢ < /2 and order Rz if ¢y = x/2. Again
a geomet;ically imposed instability appears, and in fact does so for surprisingly small
values o .
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